
352 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

fl=func(x1)
fh=func(x2)
if((fl.gt.0..and.fh.lt.0.).or.(fl.lt.0..and.fh.gt.0.))then

xl=x1
xh=x2
zriddr=UNUSED Any highly unlikely value, to simplify logic

below.do 11 j=1,MAXIT
xm=0.5*(xl+xh)
fm=func(xm) First of two function evaluations per it-

eration.s=sqrt(fm**2-fl*fh)
if(s.eq.0.)return
xnew=xm+(xm-xl)*(sign(1.,fl-fh)*fm/s) Updating formula.
if (abs(xnew-zriddr).le.xacc) return
zriddr=xnew
fnew=func(zriddr) Second of two function evaluations per

iteration.if (fnew.eq.0.) return
if(sign(fm,fnew).ne.fm) then Bookkeeping to keep the root bracketed

on next iteration.xl=xm
fl=fm
xh=zriddr
fh=fnew

else if(sign(fl,fnew).ne.fl) then
xh=zriddr
fh=fnew

else if(sign(fh,fnew).ne.fh) then
xl=zriddr
fl=fnew

else
pause ’never get here in zriddr’

endif
if(abs(xh-xl).le.xacc) return

enddo 11

pause ’zriddr exceed maximum iterations’
else if (fl.eq.0.) then

zriddr=x1
else if (fh.eq.0.) then

zriddr=x2
else

pause ’root must be bracketed in zriddr’
endif
return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.3.

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979–980. [1]

9.3 Van Wijngaarden–Dekker–Brent Method

While secant and false position formally converge faster than bisection, one
finds in practice pathological functions for which bisection converges more rapidly.

9.3 Van Wijngaarden–Dekker–Brent Method 353

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

These can be choppy, discontinuous functions, or even smooth functions if the
second derivative changes sharply near the root. Bisection always halves the interval,
while secant and false position can sometimes spend many cycles slowly pulling
distant bounds closer to a root. Ridders’ method does a much better job, but it
too can sometimes be fooled. Is there a way to combine superlinear convergence
with the sureness of bisection?

Yes. We can keep track of whether a supposedly superlinear method is actually
converging the way it is supposed to, and, if it is not, we can intersperse bisection
steps so as to guarantee at least linear convergence. This kind of super-strategy
requires attention to bookkeeping detail, and also careful consideration of how
roundoff errors can affect the guiding strategy. Also, we must be able to determine
reliably when convergence has been achieved.

An excellent algorithm that pays close attention to these matters was developed
in the 1960s by van Wijngaarden, Dekker, and others at the Mathematical Center
in Amsterdam, and later improved by Brent [1]. For brevity, we refer to the final
form of the algorithm as Brent’s method. The method is guaranteed (by Brent)
to converge, so long as the function can be evaluated within the initial interval
known to contain a root.

Brent’s method combines root bracketing, bisection, and inverse quadratic
interpolation to converge from the neighborhood of a zero crossing. While the false
position and secant methods assume approximately linear behavior between two
prior root estimates, inverse quadratic interpolation uses three prior points to fit an
inverse quadratic function (x as a quadratic function of y) whose value at y = 0 is
taken as the next estimate of the root x. Of course one must have contingency plans
for what to do if the root falls outside of the brackets. Brent’s method takes care of
all that. If the three point pairs are [a, f(a)], [b, f(b)], [c, f(c)] then the interpolation
formula (cf. equation 3.1.1) is

x =
[y − f(a)][y − f(b)]c

[f(c) − f(a)][f(c) − f(b)]
+

[y − f(b)][y − f(c)]a
[f(a) − f(b)][f(a) − f(c)]

+
[y − f(c)][y − f(a)]b

[f(b) − f(c)][f(b) − f(a)]

(9.3.1)

Setting y to zero gives a result for the next root estimate, which can be written as

x = b + P/Q (9.3.2)

where, in terms of

R ≡ f(b)/f(c), S ≡ f(b)/f(a), T ≡ f(a)/f(c) (9.3.3)

we have

P = S [T (R − T)(c − b) − (1 − R)(b − a)] (9.3.4)
Q = (T − 1)(R − 1)(S − 1) (9.3.5)

In practice b is the current best estimate of the root and P/Q ought to be a “small”
correction. Quadratic methods work well only when the function behaves smoothly;

354 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

they run the serious risk of giving very bad estimates of the next root or causing
machine failure by an inappropriate division by a very small number (Q ≈ 0).
Brent’s method guards against this problem by maintaining brackets on the root
and checking where the interpolation would land before carrying out the division.
When the correction P/Q would not land within the bounds, or when the bounds
are not collapsing rapidly enough, the algorithm takes a bisection step. Thus,
Brent’s method combines the sureness of bisection with the speed of a higher-order
method when appropriate. We recommend it as the method of choice for general
one-dimensional root finding where a function’s values only (and not its derivative
or functional form) are available.

FUNCTION zbrent(func,x1,x2,tol)
INTEGER ITMAX
REAL zbrent,tol,x1,x2,func,EPS
EXTERNAL func
PARAMETER (ITMAX=100,EPS=3.e-8)

Using Brent’s method, find the root of a function func known to lie between x1 and x2.
The root, returned as zbrent, will be refined until its accuracy is tol.
Parameters: Maximum allowed number of iterations, and machine floating-point precision.

INTEGER iter
REAL a,b,c,d,e,fa,fb,fc,p,q,r,

* s,tol1,xm
a=x1
b=x2
fa=func(a)
fb=func(b)
if((fa.gt.0..and.fb.gt.0.).or.(fa.lt.0..and.fb.lt.0.))

* pause ’root must be bracketed for zbrent’
c=b
fc=fb
do 11 iter=1,ITMAX

if((fb.gt.0..and.fc.gt.0.).or.(fb.lt.0..and.fc.lt.0.))then
c=a Rename a, b, c and adjust bounding interval d.
fc=fa
d=b-a
e=d

endif
if(abs(fc).lt.abs(fb)) then

a=b
b=c
c=a
fa=fb
fb=fc
fc=fa

endif
tol1=2.*EPS*abs(b)+0.5*tol Convergence check.
xm=.5*(c-b)
if(abs(xm).le.tol1 .or. fb.eq.0.)then

zbrent=b
return

endif
if(abs(e).ge.tol1 .and. abs(fa).gt.abs(fb)) then

s=fb/fa Attempt inverse quadratic interpolation.
if(a.eq.c) then

p=2.*xm*s
q=1.-s

else
q=fa/fc
r=fb/fc
p=s*(2.*xm*q*(q-r)-(b-a)*(r-1.))
q=(q-1.)*(r-1.)*(s-1.)

9.4 Newton-Raphson Method Using Derivative 355

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

endif
if(p.gt.0.) q=-q Check whether in bounds.
p=abs(p)
if(2.*p .lt. min(3.*xm*q-abs(tol1*q),abs(e*q))) then

e=d Accept interpolation.
d=p/q

else
d=xm Interpolation failed, use bisection.
e=d

endif
else Bounds decreasing too slowly, use bisection.

d=xm
e=d

endif
a=b Move last best guess to a.
fa=fb
if(abs(d) .gt. tol1) then Evaluate new trial root.

b=b+d
else

b=b+sign(tol1,xm)
endif
fb=func(b)

enddo 11

pause ’zbrent exceeding maximum iterations’
zbrent=b
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapters 3, 4. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §7.2.

9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-finding routines is New-
ton’s method, also called the Newton-Raphson method. This method is distinguished
from the methods of previous sections by the fact that it requires the evaluation
of both the function f(x), and the derivative f ′(x), at arbitrary points x. The
Newton-Raphson formula consists geometrically of extending the tangent line at a
current point xi until it crosses zero, then setting the next guess xi+1 to the abscissa
of that zero-crossing (see Figure 9.4.1). Algebraically, the method derives from the
familiar Taylor series expansion of a function in the neighborhood of a point,

f(x + δ) ≈ f(x) + f ′(x)δ +
f ′′(x)

2
δ2 + (9.4.1)

For small enough values of δ, and for well-behaved functions, the terms beyond
linear are unimportant, hence f(x + δ) = 0 implies

δ = − f(x)
f ′(x)

. (9.4.2)

